欧氏几何游戏攻略8关,欧氏几何怎么玩欧氏几何攻略大全

发布时间: 作者:konglu 来源:独行侠手游网

大家好,今天给各位分享欧氏几何游戏攻略8关的一些知识,其中也会对欧氏几何怎么玩欧氏几何攻略大全进行解释,文章篇幅可能偏长,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在就马上开始吧!

一、欧氏几何怎么玩欧氏几何攻略大全

欧氏几何怎么玩?欧氏几何需要用圆规在纸上画圆,在进行几何的解密,想必智商不够用的小伙伴们要被搞疯的,下面就让小编为大家带来欧氏几何攻略汇总。

《欧氏几何》

专给爱上几何课的你

曾经,上数学课用圆规画圈圈是件很爽的事。但没想到,真的有人专门做了一个几何游戏。

俄罗斯团队Horis开发的《欧氏几何》,是由一款使用尺规作图,进行几何解谜的数学游戏。

在游戏里,你需要在平面上,通过合理使用作图工具,作出垂线、切线、角平分线、圆等几何图形,在严谨的几何逻辑中,完成关卡挑战;

与此同时,你还可以不断优化设计,在尽可能少的步数内得到最优雅简洁的解决方案。

(当然你也可以这么玩,看出来什么单词了吗?)

在领会几何之美的同时,也能提升自己的逻辑思维能力,不管你是文科生还是理科生都可以一试。

二、什么是欧氏几何

欧氏几何与非欧几何的区别主要是在对平行公理的不同描述上。欧氏几何的平行公理是:过已知直线外一点,只有一条直线与已知直线平行。非欧几何把平行公理改变为:过已知直线外一点,至少有两条直线与已知直线平行(罗巴切夫斯基),或者是:过已知直线外一点,不存在一条直线与已知直线平行(黎曼)。基于这三种不同的平行公理可以推导出三种不同的几何体系来。

欧氏几何与非欧几何的区别还可以从三角形的内角和定理表现出来。欧氏几何的

三角形的内角和等于180°。在罗巴契夫斯基几何中,三角形的内角和总是小于180°;而在黎曼几何中,三角形的内角和总是大于180°。直观上看,欧氏空间是平直空间。而非欧几何空间是凹凸的空间。在小尺度范围内,我们所处的空间近似于平直的,欧氏几何的公理是适用的。但是在微尺度和宏尺度范围,欧氏几何就不再适用,非欧几何可以更好地描述非平直(非均匀)空间的各种现象。爱因斯坦的广义相对论就是建立弯曲时空的基础上的。在这方面黎曼几何得到了许多重要的应用。

三、什么是欧氏几何和非欧氏几何

欧氏几何

一、欧氏几何的建立

欧氏几何是欧几里德几何学的简称,其创始人是公元前三世纪的古希腊伟大数学家欧几里德。在他以前,古希腊人已经积累了大量的几何知识,并开始用逻辑推理的方法去证明一些几何命题的结论。欧几里德这位伟大的几何建筑师在前人准备的“木石砖瓦”材料的基础上,天才般地按照逻辑系统把几何命题整理起来,建成了一座巍峨的几何大厦,完成了数学史上的光辉著作《几何原本》。这本书的问世,标志着欧氏几何学的建立。这部科学著作是发行最广而且使用时间最长的书。后又被译成多种文字,共有二千多种版本。它的问世是整个数学发展史上意义极其深远的大事,也是整个人类文明史上的里程碑。两千多年来,这部著作在几何教学中一直占据着统治地位,至今其地位也没有被动摇,包括我国在内的许多国家仍以它为基础作为几何教材。

二、一座不朽的丰碑

欧几里德将早期许多没有联系和未予严谨证明的定理加以整理,写下《几何原本》一书,使几何学变成为一座建立在逻辑推理基础上的不朽丰碑。这部划时代的著作共分13卷,465个命题。其中有八卷讲述几何学,包含了现在中学所学的平面几何和立体几何的内容。但《几何原本》的意义却绝不限于其内容的重要,或者其对定理出色的证明。真正重要的是欧几里德在书中创造的一种被称为公理化的方法。

在证明几何命题时,每一个命题总是从再前一个命题推导出来的,而前一个命题又是从再前一个命题推导出来的。我们不能这样无限地推导下去,应有一些命题作为起点。这些作为论证起点,具有自明性并被公认下来的命题称为公理,如同学们所学的“两点确定一条直线”等即是。同样对于概念来讲也有些不加定义的原始概念,如点、线等。在一个数学理论系统中,我们尽可能少地先取原始概念和不加证明的若干公理,以此为出发点,利用纯逻辑推理的方法,把该系统建立成一个演绎系统,这样的方法就是公理化方法。欧几里德采用的正是这种方法。他先摆出公理、公设、定义,然后有条不紊地由简单到复杂地证明一系列命题。他以公理、公设、定义为要素,作为已知,先证明了第一个命题。然后又以此为基础,来证明第二个命题,如此下去,证明了大量的命题。其论证之精彩,逻辑之周密,结构之严谨,令人叹为观止。零散的数学理论被他成功地编织为一个从基本假定到最复杂结论的系统。因而在数学发展史上,欧几里德被认为是成功而系统地应用公理化方法的第一人,他的工作被公认为是最早用公理法建立起演绎的数学体系的典范。正是从这层意义上,欧几里德的《几何原本》对数学的发展起到了巨大而深远的影响,在数学发展史上树立了一座不朽的丰碑。

三、欧氏几何的完善

公理化方法已经几乎渗透于数学的每一个领域,对数学的发展产生了不可估量的影响,公理化结构已成为现代数学的主要特征。而作为完成公理化结构的最早典范的《几何原本》,用现代的标准来衡量,在逻辑的严谨性上还存在着不少缺点。如一个公理系统都有若干原始概念(或称不定义概念),如点、线、面就属于这一类。欧几里德对这些都做了定义,但定义本身含混不清。另外,其公理系统也不完备,许多证明不得不借助于直观来完成。此外,个别公理不是独立的,即可以由其他公理推出。这些缺陷直到1899年德国数学家希尔伯特的在其《几何基础》出版时得到了完善。在这部名著中,希尔伯特成功地建立了欧几里德几何的完整、严谨的公理体系,即所谓的希尔伯特公理体系。这一体系的建立使欧氏几何成为一个逻辑结构非常完善而严谨的几何体系。也标志着欧氏几何完善工作的终结。

非欧几何学是一门大的数学分支,一般来讲,他有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里的几何学不同的几何学,狭义的非欧几何只是指罗氏几何来说的,至于通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。

欧几里得的《几何原本》提出了五条公设,长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。

有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。

因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。

由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明?

到了十九世纪二十年代,俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧式平行公理相矛盾的命题,用它来代替第五公设,然后与欧式几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。我们知道,这其实就是数学中的反证法。

欧氏几何游戏攻略8关,欧氏几何怎么玩欧氏几何攻略大全

但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论:

第一,第五公设不能被证明。

第二,在新的公理体系中展开的一连串推理,得到了一系列在逻辑上无矛盾的新的定理,并形成了新的理论。这个理论像欧式几何一样是完善的、严密的几何学。

这种几何学被称为罗巴切夫斯基几何,简称罗氏几何。这是第一个被提出的非欧几何学。

从罗巴切夫斯基创立的非欧几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互不矛盾的一组假设都有可能提供一种几何学。

几乎在罗巴切夫斯基创立非欧几何学的同时,匈牙利数学家鲍耶·雅诺什也发现了第五公设不可证明和非欧几何学的存在。鲍耶在研究非欧几何学的过程中也遭到了家庭、社会的冷漠对待。他的父亲——数学家鲍耶·法尔卡什认为研究第五公设是耗费精力劳而无功的蠢事,劝他放弃这种研究。但鲍耶·雅诺什坚持为发展新的几何学而辛勤工作。终于在1832年,在他的父亲的一本著作里,以附录的形式发表了研究结果。

那个时代被誉为“数学王子”的高斯也发现第五公设不能证明,并且研究了非欧几何。但是高斯害怕这种理论会遭到当时教会力量的打击和迫害,不敢公开发表自己的研究成果,只是在书信中向自己的朋友表示了自己的看法,也不敢站出来公开支持罗巴切夫斯基、鲍耶他们的新理论。

四、欧氏几何的五大几何公理

欧氏几何的五大几何公理如下:

欧几里得的五个定理是:任意两个点可以通过一条直线连接;任意线段能无限延长成一条直线;给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆;所有直角都全等;若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角和,则这两条直线在这一边必定相交。

欧几里得几何定理是指按照古希腊数学家欧几里得的《几何原本》构造的几何学。欧几里得几何有时单指平面上的几何,即平面几何。三维空间的欧几里得几何通常叫做立体几何。在欧几里德以前,古希腊人已经积累了大量的几何知识,并开始用逻辑推理的方法去证明一些几何命题的结论。

欧几里德将早期许多没有联系和未予严谨证明的定理加以整理,写下《几何原本》一书,标志着欧氏几何学的建立。

1公理彼此相等。

2等于加等于。

3等于减等于。

4完全重合的事物相等。

5整体大于部分的公设。

从罗巴切夫斯基创立的非欧几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互不矛盾的一组假设都有可能提供一种几何学。

1、任何两点都可以用直线连接起来。

2、任何线段都可以无限延伸成一条直线。

3、给定任意一条线段,它的一个端点可以作为圆心,该线段可以作为半径做圆。

4、所有直角都全等。

5、若两条直线与第三条直线相交,且同侧内角之和小于两个直角,则两条直线必在该侧相交。第五个公设,叫做平行公理,引出了千禧年最大的数学和哲学问题之一。

后人证明它等价于以下两个命题:

1。三角形的内角之和等于两个直角;

2.通过不在一条直线上的点,只有一条直线与这条直线不相交。

欧氏几何游戏攻略8关的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于欧氏几何怎么玩欧氏几何攻略大全、欧氏几何游戏攻略8关的信息别忘了在本站进行查找哦。

相关文章
推荐游戏
风流霸业
风流霸业
手游攻略 137.9M
下载
风之谷
风之谷
手游攻略 10.5M
下载
最佳炮手
最佳炮手
手游攻略 68.1M
下载
龙刃
龙刃
手游攻略 184.0M
下载
北凉悍刀行
北凉悍刀行
手游攻略 336.8M
下载
穿越武林
穿越武林
手游攻略 249.9M
下载